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Abstract. By the particle—hole transformation, thg7LHubbard model at the finite on-site
coupling energy is mapped to the Gross—Neveu model in the continuous limit, while the spectrum
is given by the Bethe ansatz equations. We demonstrate that the model is an ideal gas with
exclusion statistics, and give the statistical interactions in the algorithm of Bernard and Wu.

1. Introduction

Since Yang introduced [1] the Bethe ansatz to study the one-dimensional many-body problem
with §-function interactions, the quantum integrable systems, including the Hubbard model
[2], Thirring model [3], Gross—Neveu model [4] and Kondo problem [5], have been
intensively studied. Recently, Haldane [6] and Shastry [7] introduced another integrable
model, the 1r? Heisenberg chain, from which Haldane proposed the concept of exclusion
statistics [8], a generalization of that Pauli principle. Bernard and Wu [9] pointed out that
Bethe ansatz solvable models can be regarded as an ideal gas with exclusion statistics. A
review article on this topic has appeared [10].

There have appeared many papers on the long-range models in the spirit of Haldane and
Shastry. One of them is the/A Hubbard model suggested by Gebhard and Ruckenstein
[11], who related the model to the Haldane—Shastry model in the ldrgase and, through
numerical diagonalization, found that the model exhibits a metal-insulator transition at
U = 2rt, whereU is the on-site energy andis the hopping coefficient. However, that the
result in largeU is prolonged toU « 2t is not natural, although they claimed that the
result can be compared with some limited cases. In [12], Wang and his co-workers found
the Gutzwiller-Jastrow wavefunction for the model in the strong lithi= co. Obviously,
to explore the model more clearly, we need exact results because of the invalidity of
the conventional perturbative method. In [13], we found a lot of eigenstates via-the
pairing mechanism [14]. In this paper, we will develop the Bethe ansatz solution in the
continuous limit by mapping the model to the well known Gross—Neveu model when the
on-site coupling energy is finite, and point out that the model shares exclusion statistics.

The paper is organized as follows. In section 2, by mapping fheHubbard model to
the Gross—Neveu model, we solve the model in terms of the Bethe ansatz; in section 3, we
solve the energy spectrum in the case of given numbers of spin-up and spin-down particles
in the thermodynamics limit; in section 4, we point out that the model can be described as
an ideal gas with exclusion statistics in the algorithm of Bernard and Wu; and, finally, we
give some discussions in section 5.

0305-4470/97/051495+08$19.5@C) 1997 I0OP Publishing Ltd 1495



1496 Yue-lin Shen and Mo-lin Ge
2. Bethe ansatz

Let us start with the Hamiltonian of the model [11]

H = Z fijC;rGng + UZC}LTCiTC;rlCil (1)

o=+,i#] i

with the long-range hopping

=it (=) [dG — HITY
(i — j)a
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whereq is the lattice spacing and the length of the lattice. When we rescaleas the
unit, L becomes the number of the lattice. We keefo go through the continuous limit.
Further we assumeand U positive andL even without any speciality.

The Fourier transformation of the kinetic term H leads to

H=—t Z kc}:(,cka +U ZCZTC,'TCLCN (3)
k,o=% i

. L .
d(z—;):asm

where
_JT(L—l) <k< n(L—l).

La La
If we make the particle—hole transformation

Ckt = Ak Cky =b}: Ciy = a; Cil =blT (4)
Here we must note that the Fourier transformationsdoand b are different, i.e if we
definea; = VI/L) ", exp(ikl)a, correspondingly we havé, = /1/LY ", exp(—ikl)by,
which obeys the Fourier transformationsfand ci, respectively.
Through this process the Hamiltonian is recast into

H=—1Y kiajay+ b)) + Uy alaib;b]
k i
=—1Y klafax —blb) —U Y alaiblb; + U ala;. (5)
k i i

From transformation (4) we have different definitions of the vacumn for the spin-up and
spin-down excitations. The vacuum for the spin-up excitations is just the usual empty state,
with aZ|O) as the electron; while the vacuum for the spin-down excitations is the filled Fermi
sea by the down electrons, thbe) is the annihilation of the electron in the Fermi sea, or
creation of a hole. However, we will not care about the difference between them in what
follows since they are equal in algebra.

As Y, ala; = N* is the conserved number of the spin-up electrons, we first consider

Hy=—1) (alay —blb) — Uy alblba. (6)
k i

We should notice thathis procedure is invalid for the case 6f = oo, when the double
occupancy is forbidden, so therefore there is neither the coupling term nor thé/tsrm

We treatH; in the continuous limit as that done in the Kondo problem [5]. In general,
the continuous limit is not valid in any case because of the short-distance fluctuation, and
the coupling constants need renormalization if the scaling law is preserved. However,
renormalization in the strong correlated system is not easy to deal with, so therefore what
we use is prolongation as is done in [11]. We assume that the result in the weak coupling
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region can be prolonged to the strong coupling region, which is based on two important
facts: the first is the duality relation betwe&nand 2r¢; the second is the fact that the Bethe
ansatz only concentrates on the lowest states, when the momentum is always restricted in
the first Brillouin zone. Since there are not enough exact conclusions in the literature, we
believe our results can shed some light on the study of this model.

The meaning of the continuous limit is to take— O while preservingL, when the
momentum distribution will be over the total real axis, and the summation in (6) will be
replaced by integration. Hence the Hamiltonidp reads

Hy = —t/ dk k(a)a, — bby) — U/ dxalbib.a,. (7

X

We define the field operatorg, (x), ¥_(x) with the Fourier transformation relation
1 .
x)=a, = — [ dke¥a
e 7 / .
1 .
_(x)=b, =" | dke*p 8
o) 7 / . (®)
and the Hamiltoniarf{; can be rewritten in the second quantization form

H1=it2/aaw;axwa<x>—02f ey ) (Ve OY Y (x).  (9)
a==+

a<b

Here we have defined the chirality

{+1 a
o, =
a

Until now, we found that the lattice model is canonically mapped to the Gross—Neveu model
in the continuous limit, and hence the most general solution for (9) is assumed [5] to be

_l’_
=-1.

N N
|P) = Z/H dxi¢ (x1a1, X2z, . ... xyay) [ [ ¥] xi)10) (10)
a; i=1 i=1

where the physical vacuuif) is defined by, (x)|0) = 0, andg; is the spin of the particle
on sitex;. In order for|®) to be the eigenstate afl;, ¢ must be an eigenstate of the
following N-particle Hamiltonian,

hy = itZaia,- - %ZS()@ — x)) (e — o))* P}, (11)
i i<j

whereq; is the chirality of the particle at;, and the spin exchange operaﬂéﬁ is defined

by

PS‘-(b(...ai, <. aj ) =¢(d, ...Cli).
The antisymmetry of the total wavefunction requires that
OC..(xa)i...(xa);...) =(=)o(..(xa);...(xa);).

Hence, we have

. U
h]_:”ZOlia["'ZZS(xi_xj)(ai_aj)zpij (12)

i<j
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where P;; only exchanges the positions of the particles. From (12), we can assume
the following wavefunction withV particles labelled by momentunis ... ky and spins
ajg...ay.

d(x,a) = Z AQPQ()CQ) eXp[iZkPjXQj}HSZZ (13)
0,PeSy J l

where Q, P label the different configurational regions wiffix,) referring to 0< xp1 <
-+ < xgny < L. The corresponding energy and momentum for the state of (13) are

N
E{=—t Z‘xiki
i=1

N
P=Y k. (14)
i=1

The periodic boundary condition requires certain eigenequations et which can be
solved by the generalized Bethe ansatz [1-5]. The final result is the auxiliary equations for
kl

kel _ ﬁ r?— 14 i(ay — ag)r ﬁ ?(ozu —1j)+c¢/2
ap g, b=1 r?+1 j=1 (g — )"j) - C/2

N i(a,,_,\j)+c/2Z_ﬁi(xj—xk)—c (15)
pp iy —Aj) —c/2 i 1y =) + ¢
where N~ is the number of the spin-down electromé,is the total number of electrons;
is named rapidity or the momentum of the hole ang (r?> — 1)/r with r = 4t/ U.
To get an insight into (15), we take the logarithm of (15) which yields

N
NTO@r -2+ N 025 +2) =Y 00y — M) + 21
k=1
k 2n + 1%:9(2)» 2a,) - [a NT — (14 o, )N716 (16)
= —Ng+ — i —20,) — —|[(L—ay - oy .
L L& 4L °
Here we have used the definitioh(x) = —2arctgx/c),—7 < 6 < =, whereas

0p = 2 arccosr? — 1)/(r> + 1), 0 < 6y < 27. We have defined, as an arccosine function
instead of arctangenta function since the phase factor’ef L +i(a, —a,)r]/(r?>+1) does
not change when turns from I to 1*. If we define it in the arctangenta function, it will
cause ar ambiguity when we take the logarithm of this factor. The problem also comes
into the other factors in (15), but when we take the logarithm of them, they only cause a
27 ambiguity which has no effect, because we have to add these terms to two quantum
numbers:, and J;. In (16) the two quantum numbens, J; are given according t& and
N~

(1) N even,N~ odd
n, takes ascending half integers(N — 1)/2 to (N —1)/2
Jy takes ascending integers(N~ — 1)/2 to (N~ — 1)/2

(2) N even,N~ even
n, takes ascending integersN/2 to N/2
Jy takes ascending half integers(N~ —1)/2to (N~ —1)/2
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(3) N odd, N~ even
n, takes ascending half integers(N — 1)/2 to (N — 1)/2
Jy, takes ascending integers N~ /2 to N~ /2
(4) N odd, N~ odd
n, takes ascending half integersN /2 to N/2
Ji takes half integers;-N~/2 to N~ /2.
So far we have produced equations for the momentum distributions; however, it is never
easy to solve (16). In the next section, we solve it in the thermodynamic limit.

3. Spectrum in the thermodynamic limit

In this section, we shall derive the spectrum in the thermodynamic limit. It is usually
accepted that the Bethe ansatz solution gives the ground state for given numbers of the
spin-up and spin-down electrons.

We note that the energy for (1) should be obtained fibra- E; + UN*, hence

N
E=—t Za,-k,- +UNT.

However, sinceV ™' is a constant and does not affect the spectrum structure, we neglect it
and first discus¥;, which reads from (16)

——tZoek— tZot,|: n + — ZQ(ZA ;)

_7((1 —a)NT —(1+ ai)N_)Qo}

2t
= —% l on; — —ZQ(ZX -2
LN INTN™
Ze(zx +2) = . (17)

The meaning of thermodynam|c limit 8% — 0o, N~ — 00, L — oo with N*/L and
N~/L kept constant. If we define(i,) = 1/(A,+1 — A,) whenJ, ;1 = J, +1, then from
(16) and (17) we obtain

2t & tN*
-_— + -_—
+%/ dro(R)o2r+2) — NTN o (18)
NtO2r—2)+ N 02 +2) = / dr o (AN — )Y + 2 ;. (29)
Differentiating (19) with respect ta, we obtain
o) =f) — /k(k — o) dy (20)

where

2
ﬂM=c[
g

NT N N~
24+40—1)2 24400 +1)2
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1
kGo—A)y=S =
T2+ (A—N)2

The solution of (20) can be obtained by the Winer—Hopf technigue developed by Yang and
Yang [15]; it reads

o1 N* N~ -
o) =2 |:ch(71/c)(k -1 + ch(nc)(x+1)]' (22)

(21)

Hence, we have

E_szqut/dA N* N N-
T & T e ch(m/)—1)  ch(n/e)(h+ 1)
tNTN~
L

To obtain the ground state, we must minimize the teEﬁ[:laini in (23). Using the
permitted value of;, for example,N, N~ even, we should choose

x[N"0(2\r +2) — NTo@2r — 2)] — fo. (23)

N N N
N Nt o
n; 52 1,..., 5 (N 1) fora; =1
and
N N N
i =——,—— 1,...,—— N -1 for ;i =—1
n 3 2+ 2+( ) a

then we have
al 1
> aiN;=NTN"+ E(N+ +NO).
i=1
Hence the energy of the ground state for givéh and N~ is

N 2t ( .~ Nt N~

2 2
+-L dk[ AANEEES ]
2cL ch(w/c)(—1)  ch(m/c)(A+ 1)
INTN~

x[N"6(2r+2) — NTo(2r — 2)] — 6o+ UNT. (24)

It is interesting to ask how to compare the states from Bethe ansatz with those in [11,12].
We claim that neither their results in largelimit nor our Bethe ansatz result has revealed

all the properties in the model. Our discussion is valid wliéns finite, whereas their
results are valid wheWw is large.

4. Exclusion statistics

Exclusion statistics is a generalization of the Pauli principle proposed by Haldane [8], and
its basic idea is state counting. Consider the Hilbert sgacef a single particle of specie

«, confined to a region of matter. In general, the dimengipmwill change as particles are
added, so Haldane defined the statistical interaatignthrough the difference relation

Ady == aapANy (25)
p

where{A N} is a set of allowed changes of the particle numbers at fixed size and boundary
condition. Until now, many physical systems can be viewed as an ideal gas with exclusion
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statistics, see the review article [10]. Bernard and Wu described the Bethe ansatz solvable
model as belonging to this category [9], and Wu [10] generalized this concept to the models
with internal freedoms. It is well known that there only remains some auxiliary equations
to solve in the Bethe ansatz

LP,O) =271/ +) 0,00 1)), (26)
Jv

Here 1 andv label different kinds of quasiparticles or excitationsand j different roots
of the Bethe ansatz equations. The pseudomomenty(h.’) is a certain given function
of the rapidity A;', and 6,,(1;’, A7) is the two-body scattering phase shift between two
quasiparticles with rapidity. and A7. Again, L is the size of the system, and’} is a
set of integers or half-integers satisfyii, > 7. In the thermodynamic limit, the above
equation becomes

1, ’ ’ /
IOSZZPM"_Z/O[V.V()H)\);OUO‘)(»“ (27)

The statistical interaction may be read from (26), but can be specified in a given model:
Wu [10] defined

190
(A, A) =8,,8(0 — A — —0,, (X, ). 28
oy (A, A7) = 8,,8( )+2nax“( ) (28)
In our case, we need a little modification. First, let us rewrite (16) as

N N~
D 0@n =20 =Y 00 — M) + 21
a=1

k=1
N
Lk, = 2mn, + Ze(zxj — 2a,) + ZOO(O(;, —a,) (29)
j=1 b#a

wherefo(a, — o) = 3 (g — o) arccosr? — 1)/(r% + 1).
Considering the summation over the discrete variables and the integration over the
continuous variables, we write down

Occ(kata, kpatp) = —6o(cta — atp)

Ocs(katy, )"j) = 9(2)\] - 2a,)

Oss(Aj, A) = —O(X; — A)

OSC()\'jv kaaa) = _9(2)‘-1 - Zaa) (30)
where c refers to the electron or charge excitation, and s refers to the hole or spinon. From
Wu’s algorithm, we have the statistical interactions

acelkoy, K'ap) = 8ayq, 8(k — k')

2c 1

k) =5 =
Asclh ko) = o A0 — )2

des(h, ) = 80— 1)+ T ¢
sl T (A—A)2 42

acs(kak, )\,) - 0. (31)
The result of the above equation is derived from the continous form of the Bethe equations.

We observe that the/ Hubbard model can be viewed as a generalized ideal gas with the
statistical interaction among the spin-up, spin-down electrons and spinons.
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5. Discussion

Based on the Bethe ansatz solution, we have produced the ground state and the ideal gas
description of the 1 Hubbard model. In [11], it was pointed out that this model is related
to the 12 Heisenberg chain. Now we see that the two models share some common
characters, such as exact solvability and the ideal gas description.

An open question is whether the model belongs to the Yang—Baxter system. Recently
the Yangian symmetry has been set up in this model [20]; however, this does not mean
integrability, so a thoughtful discussion on this problem is desirable.
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