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Abstract. By the particle–hole transformation, the 1/r Hubbard model at the finite on-site
coupling energy is mapped to the Gross–Neveu model in the continuous limit, while the spectrum
is given by the Bethe ansatz equations. We demonstrate that the model is an ideal gas with
exclusion statistics, and give the statistical interactions in the algorithm of Bernard and Wu.

1. Introduction

Since Yang introduced [1] the Bethe ansatz to study the one-dimensional many-body problem
with δ-function interactions, the quantum integrable systems, including the Hubbard model
[2], Thirring model [3], Gross–Neveu model [4] and Kondo problem [5], have been
intensively studied. Recently, Haldane [6] and Shastry [7] introduced another integrable
model, the 1/r2 Heisenberg chain, from which Haldane proposed the concept of exclusion
statistics [8], a generalization of that Pauli principle. Bernard and Wu [9] pointed out that
Bethe ansatz solvable models can be regarded as an ideal gas with exclusion statistics. A
review article on this topic has appeared [10].

There have appeared many papers on the long-range models in the spirit of Haldane and
Shastry. One of them is the 1/r Hubbard model suggested by Gebhard and Ruckenstein
[11], who related the model to the Haldane–Shastry model in the large-U case and, through
numerical diagonalization, found that the model exhibits a metal–insulator transition at
U = 2πt , whereU is the on-site energy andt is the hopping coefficient. However, that the
result in largeU is prolonged toU � 2πt is not natural, although they claimed that the
result can be compared with some limited cases. In [12], Wang and his co-workers found
the Gutzwiller–Jastrow wavefunction for the model in the strong limitU = ∞. Obviously,
to explore the model more clearly, we need exact results because of the invalidity of
the conventional perturbative method. In [13], we found a lot of eigenstates via theη-
pairing mechanism [14]. In this paper, we will develop the Bethe ansatz solution in the
continuous limit by mapping the model to the well known Gross–Neveu model when the
on-site coupling energy is finite, and point out that the model shares exclusion statistics.

The paper is organized as follows. In section 2, by mapping the 1/r Hubbard model to
the Gross–Neveu model, we solve the model in terms of the Bethe ansatz; in section 3, we
solve the energy spectrum in the case of given numbers of spin-up and spin-down particles
in the thermodynamics limit; in section 4, we point out that the model can be described as
an ideal gas with exclusion statistics in the algorithm of Bernard and Wu; and, finally, we
give some discussions in section 5.
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2. Bethe ansatz

Let us start with the Hamiltonian of the model [11]

H =
∑

σ=±,i 6=j
tij c
†
iσ cjσ + U

∑
i

c
†
i↑ci↑c

†
i↓ci↓ (1)

with the long-range hopping

tij = it (−)i−j [d(i − j)]−1

d(i − j) = L

aπ
sin

π(i − j)a
L

(2)

wherea is the lattice spacing andL the length of the lattice. When we rescalea as the
unit, L becomes the number of the lattice. We keepa to go through the continuous limit.
Further we assumet andU positive andL even without any speciality.

The Fourier transformation of the kinetic term inH leads to

H = −t
∑
k,σ=±

kc
†
kσ ckσ + U

∑
i

c
†
i↑ci↑c

†
i↓ci↓ (3)

where

−π(L− 1)

La
6 k 6 π(L− 1)

La
.

If we make the particle–hole transformation

ck↑ = ak ck↓ = b†k ci↑ = ai ci↓ = b†i . (4)

Here we must note that the Fourier transformations fora and b are different, i.e if we
define al =

√
1/L

∑
k exp(ikl)ak correspondingly we havebl =

√
1/L

∑
k exp(−ikl)bk,

which obeys the Fourier transformations ofc↑ andc†↓, respectively.
Through this process the Hamiltonian is recast into

H = −t
∑
k

k(a
†
kak + bkb†k)+ U

∑
i

a
†
i aibib

†
i

= −t
∑
k

k(a
†
kak − b†kbk)− U

∑
i

a
†
i aib

†
i bi + U

∑
i

a
†
i ai . (5)

From transformation (4) we have different definitions of the vacumn for the spin-up and
spin-down excitations. The vacuum for the spin-up excitations is just the usual empty state,
with a†k|0〉 as the electron; while the vacuum for the spin-down excitations is the filled Fermi
sea by the down electrons, thusb†k|0〉 is the annihilation of the electron in the Fermi sea, or
creation of a hole. However, we will not care about the difference between them in what
follows since they are equal in algebra.

As
∑

i a
†
i ai = N+ is the conserved number of the spin-up electrons, we first consider

H1 = −t
∑
k

(a
†
kak − b†kbk)− U

∑
i

a
†
i b
†
i biai . (6)

We should notice thatthis procedure is invalid for the case ofU = ∞, when the double
occupancy is forbidden, so therefore there is neither the coupling term nor the termUN+.

We treatH1 in the continuous limit as that done in the Kondo problem [5]. In general,
the continuous limit is not valid in any case because of the short-distance fluctuation, and
the coupling constants need renormalization if the scaling law is preserved. However,
renormalization in the strong correlated system is not easy to deal with, so therefore what
we use is prolongation as is done in [11]. We assume that the result in the weak coupling
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region can be prolonged to the strong coupling region, which is based on two important
facts: the first is the duality relation betweenU and 2πt ; the second is the fact that the Bethe
ansatz only concentrates on the lowest states, when the momentum is always restricted in
the first Brillouin zone. Since there are not enough exact conclusions in the literature, we
believe our results can shed some light on the study of this model.

The meaning of the continuous limit is to takea → 0 while preservingL, when the
momentum distribution will be over the total real axis, and the summation in (6) will be
replaced by integration. Hence the HamiltonianH1 reads

H1 = −t
∫

dk k(a†kak − b†kbk)− U
∫

dx a†xb
†
xbxax. (7)

We define the field operatorsψ+(x), ψ−(x) with the Fourier transformation relation

ψ+(x) = ax = 1√
L

∫
dk eikxak

ψ−(x) = bx = 1√
L

∫
dk eikxbk (8)

and the HamiltonianH1 can be rewritten in the second quantization form

H1 = it
∑
a=±

∫
αaψ

†
a∂xψa(x)− U

∑
a<b

∫
dxψ†a(x)ψa(x)ψ

†
b(x)ψb(x). (9)

Here we have defined the chirality

αa =
{
+1 a = +
−1 a = −1.

Until now, we found that the lattice model is canonically mapped to the Gross–Neveu model
in the continuous limit, and hence the most general solution for (9) is assumed [5] to be

|8〉 =
∑
ai

∫ N∏
i=1

dxiφ(x1a1, x2a2, . . . , xNaN)

N∏
i=1

ψ†ai (xi)|0〉 (10)

where the physical vacuum|0〉 is defined byψa(x)|0〉 = 0, andai is the spin of the particle
on sitexi . In order for |8〉 to be the eigenstate ofH1, φ must be an eigenstate of the
following N -particle Hamiltonian,

h1 = it
∑
i

αi∂i − U
4

∑
i<j

δ(xi − xj )(αi − αj )2P s
ij (11)

whereαi is the chirality of the particle atxi , and the spin exchange operatorP s
ij is defined

by

P s
ij φ(. . . ai, . . . aj . . .) = φ(. . . aj . . . ai).

The antisymmetry of the total wavefunction requires that

φ(. . . (xa)i . . . (xa)j . . .) = (−)φ(. . . (xa)j . . . (xa)i).
Hence, we have

h1 = it
∑
i

αi∂i + U
4

∑
i<j

δ(xi − xj )(αi − αj )2Pij (12)
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where Pij only exchanges the positions of the particles. From (12), we can assume
the following wavefunction withN particles labelled by momentumsk1 . . . kN and spins
a1 . . . aN .

φ(x, a) =
∑

Q,P∈SN
AQP θ(xQ) exp

[
i
∑
j

kPjxQj

]∏
l

δaP laQl
(13)

whereQ,P label the different configurational regions withθ(xQ) referring to 06 xQ1 6
· · · 6 xQN 6 L. The corresponding energy and momentum for the state of (13) are

E1 = −t
N∑
i=1

αiki

P =
N∑
i=1

ki. (14)

The periodic boundary condition requires certain eigenequations forAQP , which can be
solved by the generalized Bethe ansatz [1–5]. The final result is the auxiliary equations for
k,

eikaL =
N∏

αb 6=αa,b=1

r2− 1+ i(αb − αa)r
r2+ 1

N−∏
j=1

i(αa − λj )+ c/2
i(αa − λj )− c/2

N∏
b=1

i(αb − λj )+ c/2
i(αb − λj )− c/2 = −

N−∏
k=1

i(λj − λk)− c
i(λj − λk)+ c (15)

whereN− is the number of the spin-down electrons,N is the total number of electrons,λj
is named rapidity or the momentum of the hole andc = (r2− 1)/r with r = 4t/U .

To get an insight into (15), we take the logarithm of (15) which yields

N+θ(2λj − 2)+N−θ(2λj + 2) =
N−∑
k=1

θ(λj − λk)+ 2πJj

ka = 2π

L
na + 1

L

N−∑
j=1

θ(2λj − 2αa)− 1

4L
[(1− αa)N+ − (1+ αa)N−]θ0. (16)

Here we have used the definitionθ(x) = −2 arctg(x/c),−π 6 θ 6 π , whereas
θ0 = 2 arccos(r2 − 1)/(r2 + 1), 06 θ0 6 2π . We have definedθ0 as an arccosine function
instead of arctangenta function since the phase factor of [r2−1+ i(αb−αa)r]/(r2+1) does
not change whenr turns from 1− to 1+. If we define it in the arctangenta function, it will
cause aπ ambiguity when we take the logarithm of this factor. The problem also comes
into the other factors in (15), but when we take the logarithm of them, they only cause a
2π ambiguity which has no effect, because we have to add these terms to two quantum
numbersna andJk. In (16) the two quantum numbersna, Jk are given according toN and
N−:

(1) N even,N− odd
na takes ascending half integers,−(N − 1)/2 to (N − 1)/2
Jk takes ascending integers,−(N− − 1)/2 to (N− − 1)/2

(2) N even,N− even
na takes ascending integers,−N/2 toN/2
Jk takes ascending half integers,−(N− − 1)/2 to (N− − 1)/2
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(3) N odd,N− even
na takes ascending half integers,−(N − 1)/2 to (N − 1)/2
Jk takes ascending integers,−N−/2 toN−/2

(4) N odd,N− odd
na takes ascending half integers,−N/2 toN/2
Jk takes half integers,−N−/2 toN−/2.

So far we have produced equations for the momentum distributions; however, it is never
easy to solve (16). In the next section, we solve it in the thermodynamic limit.

3. Spectrum in the thermodynamic limit

In this section, we shall derive the spectrum in the thermodynamic limit. It is usually
accepted that the Bethe ansatz solution gives the ground state for given numbers of the
spin-up and spin-down electrons.

We note that the energy for (1) should be obtained fromE = E1+ UN+, hence

E = −t
N∑
i=1

αiki + UN+.

However, sinceN+ is a constant and does not affect the spectrum structure, we neglect it
and first discussE1, which reads from (16)

E1 = −t
N∑
i=1

αiki = −t
N∑
i

αi

[
2π

L
ni + 1

L

N−∑
j=1

θ(2λj − 2αi)

− 1

4L
((1− αi)N+ − (1+ αi)N−)θ0

]
= − 2πt

L

N∑
i

αini − tN
+

L

N−∑
j

θ(2λj − 2)

+ tN
−

L

N−∑
j=1

θ(2λj + 2)− tN
+N−

L
θ0. (17)

The meaning of thermodynamic limit isN+ → ∞, N− → ∞, L → ∞ with N+/L and
N−/L kept constant. If we defineσ(λγ ) = 1/(λγ+1− λγ ) whenJγ+1 = Jγ + 1, then from
(16) and (17) we obtain

E1 = −2πt

L

N∑
i

αini − tN
+

L

∫
dλ σ(λ)θ(2λ− 2)

+ tN
−

L

∫
dλ σ(λ)θ(2λ+ 2)− tN

+N−

L
θ0 (18)

N+θ(2λ− 2)+N−θ(2λ+ 2) =
∫

dλ′ σ(λ′)θ(λ− λ′)+ 2πJλ. (19)

Differentiating (19) with respect toλ, we obtain

σ(λ) = f (λ)−
∫
k(λ− λ′)σ (λ′) dλ′ (20)

where

f (λ) = 2c

π

[
N+

c2+ 4(λ− 1)2
+ N−

c2+ 4(λ+ 1)2

]
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k(λ− λ′) = c

π

1

c2+ (λ− λ′)2 . (21)

The solution of (20) can be obtained by the Winer–Hopf technique developed by Yang and
Yang [15]; it reads

σ(λ) = 1

2c

[
N+

ch(π/c)(λ− 1)
+ N−

ch(πc)(λ+ 1)

]
. (22)

Hence, we have

E1 = −2πt

L

N∑
i

αini + t

2cL

∫
dλ

[
N+

ch(π/c)(λ− 1)
+ N−

ch(π/c)(λ+ 1)

]
×[N−θ(2λ+ 2)−N+θ(2λ− 2)] − tN

+N−

L
θ0. (23)

To obtain the ground state, we must minimize the term
∑N

i=1 αini in (23). Using the
permitted value ofni , for example,N,N− even, we should choose

ni = N

2
,
N

2
− 1, . . . ,

N

2
− (N+ − 1) for αi = 1

and

ni = −N
2
,−N

2
+ 1, . . . ,−N

2
+ (N− − 1) for αi = −1

then we have
N∑
i=1

αiNi = N+N− + 1

2
(N+ +N−).

Hence the energy of the ground state for givenN+ andN− is

Eg = E1g + UN+ = −2πt

L

(
N+N− + N

+

2
+ N

−

2

)
+ t

2cL

∫
dλ

[
N+

ch(π/c)(λ− 1)
+ N−

ch(π/c)(λ+ 1)

]
×[N−θ(2λ+ 2)−N+θ(2λ− 2)] − tN

+N−

L
θ0+ UN+. (24)

It is interesting to ask how to compare the states from Bethe ansatz with those in [11, 12].
We claim that neither their results in largeU limit nor our Bethe ansatz result has revealed
all the properties in the model. Our discussion is valid whenU is finite, whereas their
results are valid whenU is large.

4. Exclusion statistics

Exclusion statistics is a generalization of the Pauli principle proposed by Haldane [8], and
its basic idea is state counting. Consider the Hilbert spaceHα of a single particle of specie
α, confined to a region of matter. In general, the dimensiondα will change as particles are
added, so Haldane defined the statistical interactionααβ through the difference relation

1dα = −
∑
β

ααβ1Nβ (25)

where{1Nβ} is a set of allowed changes of the particle numbers at fixed size and boundary
condition. Until now, many physical systems can be viewed as an ideal gas with exclusion
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statistics, see the review article [10]. Bernard and Wu described the Bethe ansatz solvable
model as belonging to this category [9], and Wu [10] generalized this concept to the models
with internal freedoms. It is well known that there only remains some auxiliary equations
to solve in the Bethe ansatz

LPµ(λ
µ

i ) = 2πIµi +
∑
jν

θµν(λ
µ

i , λ
ν
j ). (26)

Hereµ and ν label different kinds of quasiparticles or excitations,i and j different roots
of the Bethe ansatz equations. The pseudomomentumpµ(λ

µ

i ) is a certain given function
of the rapidity λµi , and θµν(λ

µ

i , λ
ν
j ) is the two-body scattering phase shift between two

quasiparticles with rapidityλµi andλνj . Again, L is the size of the system, and{Iµi } is a
set of integers or half-integers satisfyingIµi+1 > I

µ

i . In the thermodynamic limit, the above
equation becomes

ρ0
µ =

1

2π
P ′µ +

∑
ν

∫
αµν(λ, λ

′)ρν(λ′) dλ′. (27)

The statistical interaction may be read from (26), but can be specified in a given model:
Wu [10] defined

αµν(λ, λ
′) = δµνδ(λ− λ′)+ 1

2π

∂

∂λ
θµν(λ, λ

′). (28)

In our case, we need a little modification. First, let us rewrite (16) as

N∑
a=1

θ(2λj − 2αa) =
N−∑
k=1

θ(λj − λk)+ 2πJj

Lka = 2πna +
N−∑
j=1

θ(2λj − 2αa)+
∑
b 6=a

θ0(αb − αa) (29)

whereθ0(αa − αb) = 1
2(αa − αb) arccos(r2− 1)/(r2+ 1).

Considering the summation over the discrete variables and the integration over the
continuous variables, we write down

θcc(kaαa, kbαb) = −θ0(αa − αb)
θcs(kaαa, λj ) = θ(2λj − 2αa)

θss(λj , λk) = −θ(λj − λk)
θsc(λj , kaαa) = −θ(2λj − 2αa) (30)

where c refers to the electron or charge excitation, and s refers to the hole or spinon. From
Wu’s algorithm, we have the statistical interactions

αcc(kαk, k
′αk′) = δαkαk′ δ(k − k′)

αsc(λ, kαk) = 2c

π

1

c2+ 4(λ− αk)2

αss(λ, λ
′) = δ(λ− λ′)+ 1

π

c

(λ− λ′)2+ c2

αcs(kαk, λ) = 0. (31)

The result of the above equation is derived from the continous form of the Bethe equations.
We observe that the 1/r Hubbard model can be viewed as a generalized ideal gas with the
statistical interaction among the spin-up, spin-down electrons and spinons.
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5. Discussion

Based on the Bethe ansatz solution, we have produced the ground state and the ideal gas
description of the 1/r Hubbard model. In [11], it was pointed out that this model is related
to the 1/r2 Heisenberg chain. Now we see that the two models share some common
characters, such as exact solvability and the ideal gas description.

An open question is whether the model belongs to the Yang–Baxter system. Recently
the Yangian symmetry has been set up in this model [20]; however, this does not mean
integrability, so a thoughtful discussion on this problem is desirable.
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